High-Dimensional Posterior Consistency in Bayesian Vector Autoregressive Models

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Estimates for Vector - Autoregressive Models

This paper examines frequentist risks of Bayesian estimates of VAR regression coefficient and error covariance matrices under competing loss functions, under a variety of non-informative priors, and in the normal and Student-t models. Simulation results show that for the regression coefficient matrix an asymmetric LINEX estimator does better overall than the posterior mean. For the error covari...

متن کامل

Comparison of Neural Network Models, Vector Auto Regression (VAR), Bayesian Vector-Autoregressive (BVAR), Generalized Auto Regressive Conditional Heteroskedasticity (GARCH) Process and Time Series in Forecasting Inflation in ‎Iran‎

‎This paper has two aims. The first is forecasting inflation in Iran using Macroeconomic variables data in Iran (Inflation rate, liquidity, GDP, prices of imported goods and exchange rates) , and the second is comparing the performance of forecasting vector auto regression (VAR), Bayesian Vector-Autoregressive (BVAR), GARCH, time series and neural network models by which Iran's inflation is for...

متن کامل

Bayesian Mixtures of Autoregressive Models

In this paper we propose a class of time-domain models for analyzing possibly nonstationary time series. This class of models is formed as a mixture of time series models, whose mixing weights are a function of time. We consider specifically mixtures of autoregressive models with a common but unknown lag. To make the methodology work we show that it is necessary to first partition the data into...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the American Statistical Association

سال: 2018

ISSN: 0162-1459,1537-274X

DOI: 10.1080/01621459.2018.1437043